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Abstract 

In this paper we characterize workers’ vulnerability to automation in the near 

future in Argentina as a function of the exposure to routinization of the tasks 

that they perform and the potential automation of their occupation. In order to 

do that we combine (i) indicators of potential automatability by occupation and 

(ii) worker’s information on occupation and other labor variables. We find that 

the ongoing process of automation is likely to significantly affect the structure 

of employment. In particular, unskilled and semi-skilled workers are likely to 

bear a disproportionate share of the adjustment costs. Automation will 

probably be a more dangerous threat for equality than for overall employment. 
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1. Introduction  

Technological change is one of the main engines of economic growth and 

social progress. However, technical advances typically alter the production 

process and hence modify the productivity and ultimately the demand for 

different factors. Large changes in technology are profoundly disruptive, at 

least in the short run.  

The concerns for the social and labor impacts of the technological changes 

are not new: the rebellion of the luddites against the machines of the Industrial 

Revolution, and the worries of J.M. Keynes about the technological 

unemployment are just examples of the fears raised by technical innovations. 

These fears, however, proved to be largely misplaced: although in the short run 

machines did displace workers, productivity increased and new jobs were 

created, so that in the long run economic growth was strongly boosted by new 

technologies and unemployment did not significantly increase.     

A new wave of strong technological advances seems to be under way. 

Automation and digitization are the new technologies that boost productivity, 

growth, and wealth, but also disrupt labor market’s structure. The major 

concern is that new technologies may displace a significant share of workers 

out of the labor market. Will this time be different? Some argue that the nature 

of the new technological innovations places a much stronger threat on 

employment than previous “industrial revolutions”. But even if overall 

employment is not significantly affected, it is likely that the new technologies 

modify the relative demands for different types of workers, affecting the 

structure of employment and ultimately the income distribution.    

The main goal of this paper is to characterize workers’ vulnerability to 

automation in the near future in Argentina as a function of the exposure to 

routinization of the tasks they perform and the potential robotization of their 

occupation. In order to do that we combine two different sets of data: (i) 

indicators of potential automatability by occupation and (ii) worker’s 

information on occupation and other labor variables.  

In particular, we rely on two different measures of risk of automation 

recently developed by Arntz et al. (2016, 2020) and Frey and Osborne (2017), 

along with a measure we construct with microdata of the PIACC survey carried 

out in Chile. These indicators of risk of automation by occupation are combined 

with microdata on workers drawn from the main national household survey of 

Argentina (EPH).   
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According to our preferred estimates, we find that the ongoing process of 

automation is not likely to make a large dent on the overall rate of employment 

in Argentina. Instead, it is more likely for the expected technological changes 

to significantly affect the structure of employment. In particular, unskilled and 

semi-skilled workers are likely to bear a disproportionate share of the 

adjustment costs, since the automatability of their occupations is higher 

compared to skilled workers. Therefore, automation will probably be a more 

dangerous threat for equality than for overall employment.  

The rest of this paper is organized as follows. In section 2 we review the 

literature on automatability by occupation. In section 3 we provide details on 

the methodology applied and the data used to estimate the risk of automation 

in Argentina. The main results are presented in section 4. The paper closes in 

section 5 with a discussion on the interpretation of the results and some policy 

implications.  

 

2. Literature review  

The early literature on skill-biased technological change dates back to the 

works of Katz and Murphy (1992), Bound and Johnson (1992) and Card and 

Lemieux (2001). Following the Tinbergen’s idea of the race between technology 

and education this literature assumes that technology is complementary with 

skilled labor, therefore positively affecting the relative demand and wage of 

skilled workers. Technological change is thus associated to an unambiguous 

unequalizing effect on the income distribution.   

More recently, with the proliferation of automation processes in the form of 

digital technology and robotics, the literature that studies technology and labor 

markets has shifted to the task-based approach of Autor et al. (2003) and 

Acemoglu and Autor (2011). The task approach argues that the 

complementarity or substitutability between technology and labor does not 

occur at the worker category level but rather depending on how susceptible 

different tasks are for automation. In particular, routine tasks that follow well-

defined rules can be more easily automated based on rule-based algorithms, 

using increasingly powerful computers. As a consequence, labor demand for 

routine tasks has declined. Since routine tasks are more widespread among 

middle-skilled, medium-wage workers, automation has led to a polarization of 

the labor market with declining shares of middle-wage workers. A growing 

literature for developed countries documents that recent technological change 

replaces labor routine tasks that are heavily concentrated in the middle of the 
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skills distribution. This hypothesis is known as job polarization (Autor and 

Dorn, 2013; Goos et al. 2014).  

Whereas the main objective of this line of research is to assess the 

impact of automation in the past decades, a recent strand takes a more 

prospective view, motivated by the acceleration in the implementation of new 

technologies. How many tasks or occupations might be automatable in the near 

future? What could be the effect on the labor market and on the income 

distribution? There have been a number of initiatives to estimate the capability 

of substituting occupations with machines in the near future. Naturally, the 

exercises are highly conjectural, as they imply predicting the spreading of 

recent technologies and the implementation of new ones. However, given the 

relevance of the potential economic and social impact of those changes, a new 

literature that estimates the risk of automation and the potential threat to jobs 

has recently emerged.  The critical component of this body of research is how to 

define a job as “automatable”. 

So far, the most popular approach follows the study of Frey and Osborne 

(2017) (FO thereafter). Their empirical analysis proceeds in two steps. First, 

they use the 2010 version of O*NET, a database of information on the task 

content of 903 occupations in the US, constructed from the assessments of 

labor market analysts, experts and workers. The O*NET data is matched to 

the 702 occupations of the Labor Department’s Standard Occupational 

Classification (SOC). Second, they assign to each occupation a probability of 

automation. In order to do that, they asked machine learning researchers to 

classify occupations into being either automatable or not, based on the reported 

task content.1 In particular, they select 70 occupations whose labelling the 

experts were highly confident about, and then they impute the automatability 

to the remaining occupations based on a model of occupation’s automatability 

on some attributes (e.g. manual dexterity, originality, social perceptiveness). 

The model returns an estimate of the automation potential: the likelihood that 

an occupation is technically automatable or, “strictly speaking, it is an estimate 

of the probability that the experts would have classified a given occupation as 

automatable during the workshop” (Arntz et al., 2020). For simplicity FO divide 

occupations into three groups according to the probability of automation: low- 

risk (less than 30%), medium-risk (30-70%) and high-risk (>70%) occupations. 

They report that 47% of all jobs in the US are in the high-risk category.2 

 
1 The specific question asked was: “Can the tasks of this job be sufficiently specified, conditional 

on the availability of big data, to be performed by state of the art computer-controlled 

equipment?”  

2 These occupations “are potentially automatable over some unspecified number of years, 

maybe a decade or two” (Frey and Osborne, 2017). 
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Service, sales and office jobs are over-represented in that category. The risk of 

automation is higher for low-skilled workers and for low-wage occupations, 

suggesting that automation could disproportionately affect these groups of 

workers. Several authors have replicated the FO analysis in other countries, 

assuming that the automatability by occupation is the same as in the US.3 

Santos et al. (2015) apply this approach to ten developing countries and a 

Chinese province. They include a simple adjustment for the fact that 

technologies are adopted and diffused with a time lag in the developing world. 

In World Bank (2016) this methodology is extended to a larger sample of 

developing countries.  

Other authors have followed the FO approach but using different sources 

to assess the automation probabilities. Vermeulen et al. (2018) construct an 

expert assessment with inputs from roboticists, whereas Manyika et al. (2017) 

use a machine-learning algorithm to score the more than 2,000 work activities 

in relation to 18 performance capabilities. Josten and Lordan (2019) introduce 

an alternative classification of automatable occupations based on patent data 

from Google Patents. They argue that patents activity is a better proxy to 

identify the jobs that will be automatable in the near future. The authors take 

the non-automatable jobs defined by Autor and Dorn (2013) and assess the 

chances of becoming automatable in the near future based on patent activity in 

the area. Josten and Lordan (2019) find that 47% of all current jobs in the US 

are automatable over the next decade, an estimate similar to that of FO. The 

authors stress that the jobs with less risk of automation are those that involve 

abstract, strategic or creative thinking, with high interactions with people. 

The FO approach assumes that occupations are homogeneous in terms of 

tasks. This is however a strong assumption, since workers of the same 

occupation usually conduct different tasks, and thus may be differently exposed 

to automation depending on the tasks performed (Autor and Handel, 2013).4 In 

reaction to this concern, Arntz et al. (2016, 2017) follow a task-based instead of 

an occupation-based approach, by focusing on what people actually do in their 

jobs rather than relying on occupational descriptions of jobs. Information on 

tasks is obtained from the Programme for the International Assessment of 

Adult Competencies (PIAAC), a unique dataset which contains micro-level 

 
3 Lawrence et al. (2017) for England, Brzeski and Burk (2015) for Germany, Pajarinen and 

Rouvinen (2014) for Finland, Bowles (2014) and PWC (2018) for a group of European 

Countries. 
4 In fact, the evidence suggests that the recent decline in routine tasks was driven by declining shares of 
routine tasks within occupations instead of declining shares of routine occupations (Spitz-Oener, 2006). 
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indicators on socio-economic characteristics, skills, job-related information, job-

tasks and competencies for a sample of countries.  

Based on US observations in the PIAAC, Arntz et al. (2017) estimate a 

model of the automatability indicator of FO on workers’ actual tasks, and use 

the predictions of this model as indicator of true automatability. A worker may 

have an occupation whose job description led FO to classify it as highly 

automatable, but if the actual tasks performed by the worker in that 

occupation (as reported to the PIAAC) imply less routine activities, the 

predicted automatability from the model will be lower. Following this approach 

Arntz et al. (2016) find that the threat to jobs is much less severe than 

estimated by other studies. While Frey and Osborne (2017) estimate that 47 

percent of all U.S. workers are subject to a high risk of their jobs being 

automated over the next two decades, Arntz et al. (2017) reduce this estimate 

to 9 percent. The difference stems from the large variation of workers’ tasks 

within occupations. In particular, many seemingly automatable jobs also 

include tasks for which machines are not well suited, such as problem solving 

or influencing decision making. Recently, other authors have applied variants 

of this task-based approach and found results in line to those of Arntz et al. 

(2016).5 

 

3. Data and methodology  

Our analysis combines workers’ characteristics drawn from national 

household surveys with some of the automatability (or “risk of automation”) 

indicators described above, defined at the occupation level.    

 
Indicators of risk of automation  

Our main results are based on the automatability estimations of Arntz et 

al. (2016, 2020).6 Following the methodology described in the previous section, 

they compute in 20 OECD countries an automatability occupation index that 

reflects the share of workers in that occupation with high automation potential 

(higher than 70%). The information is available at the ISCO08 2-digit level. We 

take a weighted average of these indexes across countries, using the number of 

 
5 Nedelkoska and Quintini (2018) use PIAAC and find that 10% of U.S. workers are in the “high-risk” group.  
Pouliakas (2018) uses the European Skills and Jobs Survey (ESJS), and finds that 14% of workers in the 
European Union work in automatable jobs. 
6 We are very grateful to the authors for the data provided.  
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workers in each occupation as weights.7 The main assumption is that this 

average is representative of the risk of automation in Argentina. This 

assumption may not be strong if technologies spread globally (even if they do it 

with lags) and if the structure of tasks by occupations are similar across 

countries. A comforting observation is that the characteristics and tasks by 

occupation reported in the PIAAC survey do not differ much among countries 

(Arntz, et al. 2017), even when including Chile, the only Latin American 

country in PIAAC, in the comparison.  

According to this task-based index there is substantial heterogeneity in 

the degree of automatability across occupations (Figure 1). Whereas the risk of 

automation in the near future is negligible for teaching, health, information 

and communication professionals, the risk is high for clerks, machine 

operators, sales workers, drivers, construction workers, and food preparation 

assistants. Around 30% of the jobs in these groups are severely threatened of 

being replaced by machines.  

Our second risk-of-automation index is adapted from Frey and Osborne 

(2017). We match the 702 occupations of the Labor Department’s Standard 

Occupational Classification (SOC) to the ISCO08 two-digit classification using 

a crosswalk provided by the Bureau of Labor Statistics. Table 1 shows the risk 

of automation under this alternative (labeled as #2) in comparison with the 

previous one (labeled as #1). As discussed above, the risk of automation is 

higher under this approach. However, the correlation across occupations 

between the two alternative indices is high: the Pearson correlation is 0.707, 

and the Spearman rank correlation is 0.796, both highly significant.  

It is important to point out that these two automatability indicators 

refer to what theoretically could be automated in the future, given the 

projections about the technology. This must not be equated with job-losses. The 

fact that automation is technically feasible for a task performed by some 

workers does not necessarily imply that all of these workers will actually be 

replaced by automated devices. The decision to utilize automation technologies 

or workers is ultimately based on economic considerations (Bosch et al., 2018).8  

 
7  The dataset for OECD countries has very few observations for the following occupations: Market-oriented 
Skilled Forestry; Fishery and Hunting Workers; Subsistence Farmers, Fishers, Hunters and Gatherers; 
Agricultural, Forestry and Fishery Labourers. We set the index of these sectors similar to the Market-oriented 
Skilled Agricultural Workers. Also, there were no observations for Street and Related Sales and Services 
Workers, so we assigned to them the mean index of related occupations: Personal Services Workers, Sales 
Workers, Food Preparation Assistants, Refuse Workers and Other Elementary Workers.  
 
8 As discussed in Arntz et al. (2020) there are three reasons that may disconnect the risk of automation from 
actual employment losses. “First, the utilisation of new technologies is a slow process, due to economic, legal 
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As an additional robustness exercise, we also compute an ad hoc index 

based on the Chilean PIACC. The index is based on the frequency within each 

occupation of some activities that are assumed to be harder to automatize: 

supervision, planning, negotiation, problem-solving and written-outputs. In 

particular, we compute for each worker the proportion of these five tasks that 

she reports performing in her job. Our measure of risk of automation in a given 

occupation is defined as 1 minus the mean of that proportion across workers in 

that occupation. For instance, an occupation where everybody reports 

performing those five activities difficult to automatize will have a measure of 

risk of automation equals to zero. In the other extreme, an occupation where 

nobody performs those activities will be considered fully automatable. Table 2 

shows this measure for the occupations included in the Chilean PIAAC. The 

correlations with the other two alternatives are statistically significant and 

high: 0.58 with alternative 1 and 0.62 with alternative 2.  

 
National household surveys 

 Information on workers’ characteristics are drawn from the main 

national household survey in Argentina (Encuesta Permanente de Hogares, 

EPH). In order to gain power we combine the surveys of 10 quarters and work 

with a database that covers years 2016 to 2018. This allows us to have 

information on more than 200,000 workers. Nominal variables are deflated by 

the national CPI in order to make them comparable, given the high levels of 

inflation. Argentina uses its own system of occupation codes (The “Clasificador 

Nacional de Ocupaciones”). We convert these codes to the two-digit ISCO08 

classification using an official crosswalk.9  

 

4. Results  

Given the occupation structure of workers in Argentina, the overall risk of 

automation for the urban areas in this country is 16% under alternative 1. This 

value is higher than the OECD mean computed in Arntz et al. (2016) (9% of 

automatable jobs). The value for Argentina is actually a bit higher than the 

maximum in the OECD countries (12% in Austria). The difference is driven by 

 
and societal hurdles, so that technological substitution often does not take place as expected. Second, even if 
new technologies are introduced, workers can adjust to changing technological endowments by switching 
tasks, thus preventing technological unemployment. Third, technological change also generates additional 
jobs through demand for new technologies and through higher competitiveness.” 
9 Available at https://www.indec.gob.ar/ftp/cuadros/menusuperior/eph/CONVERSION_CNO-
01_CIUO-08.xls. 

https://www.indec.gob.ar/ftp/cuadros/menusuperior/eph/CONVERSION_CNO-01_CIUO-08.xls
https://www.indec.gob.ar/ftp/cuadros/menusuperior/eph/CONVERSION_CNO-01_CIUO-08.xls
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an occupation structure in Argentina biased towards low-skill jobs, associated 

with a larger threat of automation in the near future.  

The overall risk of automation is 58.9% under alternative 2. We already 

discussed the reasons behind the difference with alternative 1. The value for 

Argentina is a bit lower than the one computed for this country in World Bank 

(2016) with a similar methodology, and higher than the index reported for the 

US by Frey and Osborne (2017) (47%).  

As discussed above, these figures are highly speculative. In fact, it is 

probably more relevant to analyze the structure of the jobs at risk more than 

the mean probability of automation.  

Table 3 shows the proportion of jobs with high risk of automation by sector. 

The threat of automatability is higher in Commerce, Restaurants and Hotels, 

Transportation, Communications and Domestic Services, and lower in 

Teaching, Health and Social Services. However, there is high variability within 

industries, as production in each sector requires a wide range of occupations.  

According to the occupation structure in Argentina, the risk of automation 

is slightly higher for male (16.8%) than for female (14.9%) workers (Table 4). 

This gender gap also holds under A2 (60.9% for males and 56.3% for women), 

and under our measure based on PIAAC (65.0 for men and 60.5 for women). 

The gender gap is more noticeable for young adults, and shrinks for older 

workers. 

The household survey in Argentina only covers large urban areas, which do 

not differ much in terms of their economic and employment structures. 

Consequently, the mean risk of automation is similar across regions (Table 5).  

This result will probably be different in other more spatially heterogeneous 

countries, such as many of the Latin American ones.    

The age pattern is interesting: the risk of automation is high for young 

workers and decreases until around the age of 30 when it reaches a plateau 

(Figure 2). Remarkably, in general this pattern also holds when using A2 and 

A3 to define automatability.10 According to these results, the prospect of 

automation poses a special threat on the jobs of young workers. This fact adds 

to the concerns on the job perspectives of youngsters, a group with the highest 

unemployment rates in the region.   

Despite the increased perspectives of computerization in some high-skill 

occupations, the risk of automation remains higher in low and medium-skilled 

jobs that involve routine-intense tasks. Figure 3 shows the results for 

 
10 Under A2 the risk of automation falls after age 68.  
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Argentina: the proportion of jobs with high risk of automation is high and 

almost constant for those with less than secondary education (less than 11 

years of education). Around a third of workers in Argentina are in this low-skill 

group, for which the risk of automation is around 20%. From that point on 

automatability falls with years of education, almost linearly. For those in the 

high-skill group, with 17 or more years of formal education, the risk of 

automation is lower than 5%. The patterns are similar when using alternatives 

A2 and A3, and also consistent with those found elsewhere (Arntz et al. 2016).     

The decreasing pattern of risk of automation by labor income is not 

surprising given the results by skills (Figure 4). When using A1, the threat is 

higher and rather constant in the first three deciles of the earnings 

distribution; then falls almost linearly with the income percentiles, and 

accelerates its fall from percentile 90 on.11  Instead, under A2 the pattern is 

more stable until percentile 70, then falls slowly until percentile 90 and more 

strongly thereafter. When applying A3 the fall occurs more smoothly along the 

earnings distribution. The results are similar when using the hourly wage 

rather than the earnings distribution. Also, the pattern of automatability is 

decreasing in a measure of household rather than worker income (Figure 6). 

While the risk of automation is around 21% in the bottom deciles of the 

household income distribution, it falls to 9% in the top decile. In sum, although 

specific results vary across the alternative methodologies and income 

distributions, the main pattern remains: the risk of automation is higher for 

low-skill, low-earnings, poor workers.  

 

Impact on income inequality  

Assessing the impact of the risks of automation on the income 

distribution is a highly speculative endeavor. Even if we could estimate which 

workers are more likely to be directly affected by automation, it is almost 

impossible to estimate the general-equilibrium effects of such a major shock on 

the economy. Workers replaced by machines could become unemployed, or find 

a job in the same firm by performing a different task, or end up employed in 

other sector of the economy. And of course the implications could extend 

beyond workers initially reached by the introduction of robots and computers: 

the whole labor market will be affected in ways that are difficult to predict. 

In this section we carry out two very simple, yet illustrative exercises. 

First, we compute changes in the labor income distribution assuming a 

 
11 Figure 5 shows automatability as a function of earnings (not earnings percentiles). The risk of automation 
strongly falls in the upper-tail of the earnings distribution.  
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proportional fall in earnings only for those workers initially affected by 

automation. Second, we estimate changes in the household per capita income 

distribution arising from the combined effect of two sources: (i) change in 

earnings according to the previous exercise and (ii) change in capital income 

after the replacement of workers by machines.   

The first exercise is extremely simple. We focus on the initial partial-

equilibrium effect of the technological change and assume that only earnings of 

workers directly affected by automation are modified. In addition, for simplicity 

we assume that the earnings fall is similar (in proportional terms) for all 

affected workers. Therefore, the wage after automation is equal to a factor  of 

the wage before automation. What would be the increase in earnings inequality 

in that simple scenario? Table 6 shows the Gini coefficient for alternative 

values of .12 The original Gini (=1) for the period 2016-2018 in Argentina is 

41.1. A reduction of 25% in wages of workers affected directly by automation 

(=0.75) would increase the Gini coefficient only slightly to 41.9 (a 2% increase 

in inequality). Instead, if the fall is 50%, the Gini would rise to 43.6 (a 6% 

increase in inequality), whereas if automation drives workers to permanent 

unemployment (i.e. setting =0), the Gini would dramatically increase to 50.5 

(a 23% increase).  

The second exercise adds the likely increase in capital income due to 

automation. We assume that the introduction of robots implies an increase in 

capital income by the amount of the wages of the displaced workers. We also 

consider an alternative where the increase in capital income is just 50% of the 

saved wages.13 We consider three alternatives in order to assign those rents: (i) 

to the top percentile of the household per capita income distribution (as Koru 

(2019) suggests), (ii) proportional to capital income, and (iii) proportional to 

household per capita income. Table 7 and Figure 7 show the results. The 

original Gini coefficient for the household per capita income distribution is 

41.3. If for instance automation reduces earnings of affected workers by 25% 

while the capital incomes from automation go to the top percentile, then the 

Gini coefficient will increase to 52.3: a dramatic jump in inequality of 26.7%. 

The increase is even larger if rents are distributed as the current distribution 

 
12 To compute the results of the table we proceed as follows. Suppose the probability of automation of a given 
job j is pj and that a given person i working in that job has a sample weight in the survey of mi.  Then, we 
assume that pj.mi workers similar to i are fully affected by automation while (1-pj).mi workers similar to i are 
not affected at all.   
13 Notice that the amount of these rents may be independent of the reduction in earnings for the displaced 
workers. For instance, capitalists could obtain rents by the same amount of the replaced wages, and at the 
same time the displaced workers could find other jobs and ultimately may not suffer any wage loss. This is 
possible because automation implies an increase in overall productivity and income.   
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of capital income: the Gini will rise to 59.0. The increase is smaller, although 

still economically very substantial, if rents are just 50% of the replaced wages, 

or if rents are distributed as the current total income distribution (only to the 

skilled population or to everybody). The general conclusion from the results in 

Table 7 is that at least the direct partial-equilibrium effect of automation on 

inequality could be very sizeable, especially without some mechanism that 

allows distributing the proceeds of the technological advances to all the 

population.  

 

5. Discussion  

According to our preferred estimates, the ongoing process of automation 

is not likely to make a very large dent on the rate of employment in Argentina. 

Instead, it is more likely for the expected technological changes to significantly 

affect the structure of employment. In particular, unskilled and semi-skilled 

workers are likely to bear a disproportionate share of the adjustment costs, 

since the automatability of their occupations is higher compared to skilled 

workers. Therefore, automation will probably be a more serious threat for 

income equality than for overall employment.  

The results resemble the story of skill-biased technological change (Katz 

and Murphy, 1992), invoked as one driving factor behind the increase in 

inequality in Latin American in the 1990s, rather than the more recent 

polarization story of technological changes biased against middle-skilled 

workers who perform routine-intensive tasks.   

The results entail a general policy implication. In the short and medium 

term, dislocation can be severe for certain types of work, and inequality may 

rise. This likely outcome will call for policies to smooth the adjustments caused 

by shifts in demand against low and medium paid jobs, especially for those 

groups of workers who could be most affected (the less educated and the 

youngsters). In the transition period, policies will be needed to facilitate labor 

market flexibility and mobility, introduce and strengthen safety nets and social 

protection, and improve education and training.  
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Table 1: Proportion of jobs with high risk of automation, by occupation 

Alternatives 1 and 2  

 
Source: own calculations based on EPH-INDEC (years 2016-2018), Arntz et al. (2016, 2020) 

(A1) and Frey and Osborne (2017) (A2). 

 
 

  

Occupation ISCO A1 A2

Chief Executives, Senior Officials and Legislators 11 0.4% 8.8%

Production and Specialized Services Managers 13 0.6% 10.4%

Hospitality, Retail and Other Services Managers 14 3.5% 14.8%

Science and Engineering Professionals 21 0.5% 11.1%

Health Professionals 22 0.4% 3.6%

Teaching Professionals 23 0.2% 7.1%

Business and Administration Professionals 24 0.9% 33.6%

Information and Communications Technology Professionals 25 0.3% 11.8%

Legal, Social and Cultural Professionals 26 0.5% 16.8%

Science and Engineering Associate Professionals 31 3.3% 49.0%

Health Associate Professionals 32 4.3% 37.0%

Business and Administration Associate Professionals 33 4.9% 52.7%

Legal, Social, Cultural and Related Associate Professionals 34 1.3% 37.1%

Information and Communications Technicians 35 2.0% 55.2%

General and Keyboard Clerks 41 12.0% 94.0%

Customer Services Clerks 42 22.2% 71.6%

Numerical and Material Recording Clerks 43 13.0% 93.5%

Other Clerical Support Workers 44 11.6% 83.5%

Personal Services Workers 51 19.1% 48.2%

Sales Workers 52 32.4% 78.5%

Personal Care Workers 53 5.9% 42.3%

Protective Services Workers 54 7.7% 40.3%

Market-oriented Skilled Agricultural Workers 61 8.3% 71.0%

Market-oriented Skilled Forestry, Fishery and Hunting Workers 62 8.3% 74.0%

Building and Related Trades Workers (excluding Electricians) 71 12.2% 70.0%

Metal, Machinery and Related Trades Workers 72 15.2% 72.9%

Handicraft and Printing Workers 73 13.0% 61.6%

Electrical and Electronic Trades Workers 74 10.0% 54.9%

Food Processing, Woodworking, Garment and Other Craft and Related Trades Workers 75 18.5% 71.3%

Stationary Plant and Machine Operators 81 27.7% 84.4%

Drivers and Mobile Plant Operators 83 31.1% 64.2%

Cleaners and Helpers 91 20.8% 63.5%

Agricultural, Forestry and Fishery Labourers 92 8.3% 88.0%

Labourers in Mining, Construction, Manufacturing and Transport 93 34.4% 70.9%

Food Preparation Assistants 94 34.6% 86.0%

Street and Related Sales and Services Workers 95 29.9% 94.0%

Refuse Workers and Other Elementary Workers 96 33.6% 77.9%

High risk of automation
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Table 2: Ad-hoc measure of automatability based on PIAAC Chile 

 

Source: own calculations based on EPH-INDEC (years 2016-2018) and PIACC. 

  

index based on

Occupation ISCO PIACC

Chief Executives, Senior Officials and Legislators 11 23.3%

Production and Specialized Services Managers 13 56.4%

Science and Engineering Professionals 21 51.3%

Health Professionals 22 59.7%

Teaching Professionals 23 51.8%

Legal, Social and Cultural Professionals 26 43.7%

Science and Engineering Associate Professionals 31 47.2%

Health Associate Professionals 32 67.9%

Business and Administration Associate Professionals 33 53.2%

Legal, Social, Cultural and Related Associate Professionals 34 57.1%

General and Keyboard Clerks 41 53.2%

Customer Services Clerks 42 62.5%

Personal Services Workers 51 68.7%

Sales Workers 52 67.7%

Market-oriented Skilled Agricultural Workers 61 84.3%

Building and Related Trades Workers (excluding Electricians) 71 64.4%

Metal, Machinery and Related Trades Workers 72 58.9%

Handicraft and Printing Workers 73 80.0%

Food Processing, Woodworking, Garment and Other Craft and Related Trades Workers75 76.4%

Stationary Plant and Machine Operators 81 62.9%

Drivers and Mobile Plant Operators 83 78.2%

Agricultural, Forestry and Fishery Labourers 92 88.1%

Labourers in Mining, Construction, Manufacturing and Transport 93 77.9%

Refuse Workers and Other Elementary Workers 96 84.8%
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Table 3: Proportion of jobs with high risk of automation, by sector  

 
Source: own calculations based on EPH-INDEC (years 2016-2018), Arntz et al. (2016, 2020) 

(A1) and Frey and Osborne (2017) (A2). 

 

 

Table 4: Proportion of jobs with high risk of automation, by gender 

 
Source: own calculations based on EPH-INDEC, (years 2016-2018), Arntz et al. (2016, 2020) 

(A1) and Frey and Osborne (2017) (A2). 

 

  

Occupation A1 A2 Observations

Agriculture & forestry 10.7% 73.4% 3,181

Fishing 14.1% 70.0% 224

Mining & quarrying 12.6% 58.6% 1,338

Manufacturing 16.5% 61.1% 11,629

Utilities 10.9% 63.2% 1,496

Construction 16.1% 66.1% 24,169

Commerce 25.2% 71.9% 43,414

Restaurants & hotels 23.9% 65.1% 8,468

Transportation & communications 23.5% 65.9% 12,766

Finance 11.0% 67.0% 3,554

Business services 10.4% 53.8% 13,002

Public administration 10.3% 64.2% 25,088

Teaching 4.2% 23.2% 20,410

Haealth & social services 6.4% 38.5% 13,754

Other services 13.5% 53.3% 11,336

Domestic servants 17.3% 58.9% 17,980

Extra-territorial organizations 11.6% 84.3% 14

Total 16.0% 58.8% 211,823

High risk of automation

A1 A2 Observations

Females 14.9% 56.3% 93,911

Males 16.8% 60.9% 119,915

Total 16.0% 58.9% 213,826

High risk of automation
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Table 5: Proportion of jobs with high risk of automation, by region 

 
Source: own calculations based on EPH-INDEC, (years 2016-2018), Arntz et al. (2016, 2020) 

(A1) and Frey and Osborne (2017) (A2). 

 

 
Table 6:  Gini coefficient of labor income  
Alternative impact of automation on  

labor incomes of affected workers 

 
Source: own calculations based on EPH-INDEC (years 2016-2018) and Arntz et al. (2016, 2020). 

 

Table 7:  Gini coefficient of household per capita income  
Alternative impact of automation  

 
Source: own calculations based on EPH-INDEC (years 2016-2018) and Arntz et al. (2016, 2020). 

Note: In the top percentile alternative rents are distributed evenly to the top percentile of the 

household income distribution. In the capital income alternative rents are distributed as the 

current distribution of capital incomes. In the income alternative rents are distributed similar 

to the distribution of household per capita income. The income (only skilled) alternative is 

similar to the previous one but rents go only to households with skilled workers (more than 12 

years of education).  

 

A1 A2 Observations

GBA 16.0% 58.7% 40,264

Pampeana 15.8% 58.8% 62,028

Cuyo 16.3% 59.1% 19,823

NOA 16.6% 59.7% 45,556

Patagonia 14.7% 59.2% 25,862

NEA 15.8% 60.3% 20,293

Total 16.0% 58.9% 213,826

High risk of automation

Beta Gini

1 41.1

0.75 41.9

0.5 43.6

0.25 46.4

0 50.5

1 0.75 0.5 0.25 0

Top percentile - 100% 48.9 52.3 59.8 69.8 82.3

Top percentile - 50% 45.1 47.6 54.2 63.1 76.5

Capital income - 100% 52.9 59.0 66.2 74.7 87.3

Capital income - 50% 47.5 52.5 58.6 66.2 81.6

Income (only skilled)-100% 43.1 47.0 51.5 64.4 68.4

Income (only skilled)-50% 42.2 45.9 49.9 62.9 66.2

Income - 100% 41.3 44.7 47.9 51.3 67.3

Income - 50% 41.3 44.7 47.9 51.3 67.3

Beta
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Figure 1: Proportion of jobs with high risk of automation, by occupation  

Alternative 1 

 

Source: own calculations based on EPH-INDEC (years 2016-2018) and Arntz et al. (2016, 2020). 

 

 

 

Figure 2: Proportion of jobs with high risk of automation, by gender and age 

Alternative 1 

 
Source: own calculations based on EPH-INDEC (years 2016-2018) and Arntz et al. (2016, 2020). 

 

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
T

ea
ch

in
g

 P
ro

fe
ss

io
n

a
ls

I &
 C

 P
ro

fe
ss

io
n

a
ls

H
e

al
th

 P
ro

fe
ss

io
n

al
s

C
h

ie
f 

Ex
e

cu
ti

ve
s 

an
d

 L
e

gi
sl

a
to

rs

Le
g

al
 &

 S
o

ci
al

 P
ro

fe
ss

io
n

a
ls

Sc
ie

n
ce

 a
n

d
 E

n
gi

n
e

er
in

g 
P

ro
fe

ss
io

n
al

s

P
ro

d
u

ct
io

n
 M

a
n

ag
e

rs

B
u

si
n

es
s 

P
ro

fe
ss

io
n

a
ls

Le
g

al
 A

ss
o

ci
at

e 
P

ro
fe

ss
io

n
a

ls

I&
C

 T
e

ch
n

ic
ia

n
s

E
n

gi
n

ee
ri

n
g 

A
ss

o
ci

at
e 

Pr
o

fe
ss

io
n

a
ls

R
e

ta
il 

M
a

n
ag

e
rs

H
e

al
th

 A
ss

o
ci

at
e 

P
ro

fe
ss

io
n

al
s

B
u

si
n

es
s 

A
ss

o
ci

a
te

 P
ro

fe
ss

io
n

al
s

P
e

rs
o

n
a

l C
ar

e
 W

o
rk

e
rs

P
ro

te
ct

iv
e 

Se
rv

ic
es

 W
o

rk
e

rs

Sk
ill

e
d

 A
gr

ic
u

lt
u

ra
l W

o
rk

er
s

Sk
ill

e
d

 F
o

re
st

ry
 &

 F
is

h
e

ry
 W

o
rk

e
rs

A
gr

ic
u

lt
u

ra
l L

ab
o

u
re

rs

E
le

ct
ri

ca
l a

n
d

 E
le

ct
ro

n
ic

 W
o

rk
er

s

O
th

e
r 

C
le

ri
ca

l S
u

p
p

o
rt

 W
o

rk
e

rs

G
e

n
e

ra
l a

n
d

 K
e

yb
o

ar
d

 C
le

rk
s

B
u

ild
in

g
 a

n
d

 R
e

la
te

d
 T

ra
d

e
s 

W
o

rk
er

s

H
a

n
d

ic
ra

ft
 a

n
d

 P
ri

n
ti

n
g 

W
o

rk
e

rs

N
u

m
e

ri
ca

l C
le

rk
s

M
e

ta
l, 

M
ac

h
in

er
y 

W
o

rk
er

s

Fo
o

d
 P

ro
ce

ss
in

g 
&

 O
th

e
r 

W
o

rk
e

rs

P
e

rs
o

n
a

l S
e

rv
ic

e
s 

W
o

rk
e

rs

C
le

an
e

rs
 a

n
d

 H
e

lp
e

rs

C
u

st
o

m
e

r 
Se

rv
ic

e
s 

C
le

rk
s

M
a

ch
in

e 
O

p
e

ra
to

rs

R
e

la
te

d
 S

al
e

s 
an

d
 S

e
rv

ic
e

s 
W

o
rk

e
rs

D
ri

ve
rs

 a
n

d
 M

o
b

ile
 P

la
n

t 
O

p
er

at
o

rs

Sa
le

s 
W

o
rk

e
rs

R
e

fu
se

 W
o

rk
e

rs
 &

 O
th

e
r 

El
e

m
e

n
ta

ry

C
o

n
st

ru
ct

io
n

, M
a

n
u

f.
 &

 T
ra

n
s.

Fo
o

d
 P

re
p

a
ra

ti
o

n
 A

ss
is

ta
n

ts

0

0.05

0.1

0.15

0.2

0.25

0.3

18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74

Total Men Women



21 
 

Figure 3: Proportion of jobs with high risk of automation, by years of 

education  

Alternative 1 

 

Source: own calculations based on EPH-INDEC (years 2016-2018) and Arntz et al. (2016, 2020). 
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Figure 4: Proportion of jobs with high risk of automation, by earnings 

percentiles  

 

 

Source: own calculations based on EPH-INDEC (years 2016-2018), Arntz et al. (2016, 2020) 

(Alternative 1) and Frey and Osborne (2017) (Alternative 2). 
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Figure 5: Proportion of jobs with high risk of automation, by earnings and 

wages. Non-parametric estimation (lowess regressions)  

 

 

Source: own calculations based on EPH-INDEC (years 2016-2018) and Arntz et al. (2016, 2020). 
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Figure 6: Proportion of jobs with high risk of automation, by household per 

capita income deciles  

 

Source: own calculations based on EPH-INDEC (years 2016-2018) and Arntz et al. (2016, 2020). 

 

 

Figure 7:  Gini coefficient of household per capita income  
Alternative impact of automation  

 

Source: own calculations based on EPH-INDEC (years 2016-2018) and Arntz et al. (2016, 2020). 
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